Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs.
نویسندگان
چکیده
We study the statistical behavior under random sequential renormalization (RSR) of several network models including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London) 433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For critical trees it happens as N/N(0) → 0 in the limit of large systems (where N(0) is the initial size of the graph and N its size at a given RSR step). In contrast, it happens at finite N/N(0) in sparse ER graphs and in the annealed model, while it happens for N/N(0) → 1 on scale-free networks. Critical exponents seem to depend on the type of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)]. While degree distributions are of main interest when regarding the scheme as network renormalization, mass distributions (which are more relevant when considering "supernodes" as clusters) are much easier to study using the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.
منابع مشابه
Scale-Free properties of weighted random graphs: Minimum Spanning Trees and Percolation
We study Erdös-Rényi random graphs with random weights associated with each link. In our approach, nodes connected by links having weights below the percolation threshold form clusters, and each cluster merges into a single node, thus generating a new “clusters network”. We show that this network is scale-free with λ = 2.5. Furthermore, we show that optimization causes the percolation threshold...
متن کاملScale-free networks emerging from weighted random graphs.
We study Erdös-Rényi random graphs with random weights associated with each link. We generate a "supernode network" by merging all nodes connected by links having weights below the percolation threshold (percolation clusters) into a single node. We show that this network is scale-free, i.e., the degree distribution is P(k) approximately k(-lambda) with lambda=2.5. Our results imply that the min...
متن کاملNumerical evaluation of the upper critical dimension of percolation in scale-free networks.
We propose numerical methods to evaluate the upper critical dimension d(c) of random percolation clusters in Erdös-Rényi networks and in scale-free networks with degree distribution P(k) approximately k(-lambda), where k is the degree of a node and lambda is the broadness of the degree distribution. Our results support the theoretical prediction, d(c) = 2(lambda - 1)(lambda - 3) for scale-free ...
متن کاملAnalysis of biological networks : Random Models ∗
1.1 Random (ER) graphs The Erdös-Rényi (ER) random graphs model, also called simply random graphs, was presented by Erdös and Rényi [4] in the 1950s and 1960s. Erdös and Rényi characterized random graphs and showed that many of the properties of such networks can be calculated analytically. Construction of an ER random graph with parameter 0 ≤ p ≤ 1 and N nodes is by connecting every pair of no...
متن کاملTreewidth of Erdös-Rényi Random Graphs, Random Intersection Graphs, and Scale-Free Random Graphs
We prove that the treewidth of an Erdös-Rényi random graph G(n,m) is, with high probability, greater than βn for some constant β > 0 if the edge/vertex ratio mn is greater than 1.073. Our lower bound mn > 1.073 improves the only previously-known lower bound established in [19]. We also study the treewidth of random graphs under two other random models for large-scale complex networks. In partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2011